Home
Class 12
MATHS
The value of int0^((3pi)/2)(|tan^(-1)tan...

The value of `int_0^((3pi)/2)(|tan^(-1)tanx|-|sin^(-1)sinx|)/(|tan^(-1)tanx|+|sin^(-1)sinx|)dx` is equal to

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)tan(sin^(-1)x)dx is equals

The value of int_(0)^(-pi//4)(1+tanx)/(1-tanx)dx is

inte^(tanx)(sinx-secx)dx is equal to

Evaluate: int_0^(pi/2) (sin2x tan^(-1)(sinx))dx

int_(0)^(1)tan(sin^(-1)x)dx equals

int_(0)^(1)tan(sin^(-1)x)dx equals

The value of lim_(xto (pi)/2) sqrt((tanx-sin{tan^(-1)(tanx)})/(tanx+cos^(2)(tanx))) is ………..

int_(0)^(pi//2)(tanx)/((1+tanx))dx=?