Home
Class 12
MATHS
The value of the integral int0^oo(xlogx)...

The value of the integral `int_0^oo(xlogx)/((1+x^2)^2)dxi s` 0 (b) log 7 (c) 5 log 13 (d) none of these

A

`0`

B

`log7`

C

`5 log 13`

D

none of these

Text Solution

Verified by Experts

`I=int_(0)^(oo) (x log xdx)/((1+x^(2))^(2))`
Let `x=1/t`
`:. I=int_(oo)^(0)((1/t)log(1/t)(-1/(t^(2)))dt)/((1+1/(t^(2)))^(2))`
`=-int_(0)^(oo) (t logt)/((1+t^(2))^(2))dt=-1`
or `I=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(1) log sin ((pix)/(2))dx is

The value of integral int_(1)^(0)(log(1+x))/(1+x^(2))dx , is

The value of the integral int_(0)^(pi)x log sin x dx is

the value of integral int_(0)^(2)(log(x^(2)+2))/((x+2)^(2))dx is

The value of the integral int_(0)^(pi//2)log |tanx| dx is

The value of the integral int_(0)^(2) (log(x^(2)+2))/((x+2)^(2)) , dx is

" 8."int_(0)^(oo)(log x)/(1+x^(2))dx

The value of the integral int _(0)^(pi//2) log | tan x| dx is