Home
Class 12
MATHS
Find the values of lambda for which the...

Find the values of `lambda` for which the angle between the vectors `vec a=2 lambda^2 hat i+4 lambda hat j+hat k` and `vec b=7 hat i-2 hat j+lambda hat k` is obtuse.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find lambda if the vectors vec a=hat i-lambda hat j+3 hat k and vec b=4 hat i-5 hat j+2 hat k are perpendicular to each other.

For what value lambda are the vectors vec a=2 hat i+\ lambda hat j+ hat k\ a n d\ vec b= hat i-\ 2 hat j+3 hat k perpendicular to each other?

For what value of lambda are the vector vec a=2 hat i+lambda hat j+ hat k\ a n d\ vec b= hat i-2 hat j+3 hat k perpendicular to each other?

Find the value of lambda so that the vectors vec a= 3 hat i + 3 hat j- lambda hat k and vec b= 2 hat i- hat j+ hat k are perpendicular to each other.

For what value of lambda are the vectores vec a=2 hat i+lambda hat j+ hat k\ a n d\ vec b= hat i-2 hat j+3 hat k perpendicular to each other?

The number of distinct real values of lambda , for which the vectors -lambda^2 hat i+ hat j+k , hat i-lambda^2 hat j+ hat ka n d hat i+ hat j-lambda^2 hat k are coplanar is a. zero b. one c. two d. three

Find lambda, when the projection of vec a=lambda hat i+ hat j+4 hat k\ on\ vec b=2 hat i+6 hat j+3 hat k\ i s\ 4\ units.

The value of lambda for which the two vectors vec(a) = 5hat(i) + lambda hat(j) + hat(k) and vec(b) = hat(i) - 2hat(j) + hat(k) are perpendicular to each other is :

The value of lambda for which the two vectors vec(a) = 5hat(i) + lambda hat(j) + hat(k) and vec(b) = hat(i) - 2hat(j) + hat(k) are perpendicular to each other is :