Home
Class 12
MATHS
Iff(pi)=2int0^pi(f(x)+f^(x))sinxdx=5,t h...

`Iff(pi)=2int_0^pi(f(x)+f^(x))sinxdx=5,t h e nf(0)` is equal to (it is given that `f(x)` is continuous in `[0,pi])dot` 7 (b) 3 (c) 5 (d) 1

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(pi)=2 and int_(0)^(pi)(f(x)+f''(x))sin x dx=5 , then f(0) is equal to ( it is given that f(x) is continuous in [0,pi] )

If f(pi)=2 and int_(0)^( pi)(f(x)+f'(x))sin xdx=5 then f(0) is equal to

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If f(x) = int_(0)^(x)(2cos^(2)3t+3sin^(2)3t)dt , f(x+pi) is equal to :

If f(x)=int_(0)^(x)(sin^(4)t+cos^(4)t)dt, then f(x+pi) will be equal to

If int_(0)^( pi)f(x)dx=pi+int_(pi)^(1)f(t)dx, then the value of (L) is :

If int_(0)^(pi)x f(sin x) dx = a int_(0)^(pi)f (sin x) dx , then a =

If int_(0)^(pi) x f (sin x) dx = A int _(0)^(pi//2) f(sin x) dx , then A is equal to

int_0^pi (sin((n+1)/2)x)/sinxdx= (A) 0 (B) pi/2 (C) pi (D) none of these