Home
Class 12
MATHS
If int1^2e^(x^2)dx=a ,t h e ninte^(e^4)s...

If `int_1^2e^(x^2)dx=a ,t h e nint_e^(e^4)sqrt(1n x)dx` is equal to (a)`2e^4-2e-a` (b) `2e^4-e-a` (c)`2e^4-e-2a` (d) `e^4-e-a`

Promotional Banner

Similar Questions

Explore conceptually related problems

Given int_(1)^(2) e^(x^(2))dx=a , the value of int_(e )^(e^(4)) sqrt(log_(e )x)dx , is

int(e^(2x))/(sqrt(1-e^(2x)))dx

int(e^(x))/(sqrt(4+e^(2x)))dx

int(e^(4x)-1)/(e^(2x))dx

int(2e^(x))/(sqrt(4-e^(2x)))dx

" "int(e^(x))/(sqrt(4-e^(2x)))dx

int(e^((x^(2)+4ln x))-x^(3)e^(x^(2)))/(x-1)dx is equal to

int1/((e^(2x)+e^(-2x))^(2))dx=

int(4e^x+4)/(2e^x-8)dx=

int(3e^x+4)/(2e^x-8)dx=