Home
Class 12
MATHS
Let f(x)=int1^x(3^t)/(1+t^2)dx ,w h e r ...

Let `f(x)=int_1^x(3^t)/(1+t^2)dx ,w h e r e`x > 0.` Then (a)for `0

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

f(x)=int_1^x lnt/(1+t) dt , f(e)+f(1/e)=

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

Let function F be defined as f(x)=int_(1)^(x)(e^(t))/(t)dtx>0 then the vaiue of the integral int_(1)^(1)(e^(t))/(t+a)dt where a>0 is

Let f(x)=int_(1)^(x)(e^(t))/(t)dt,x in R^(+). Then complete set of valuesof x for which f(x)<=In x is

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

Let f(x)=int_(0)^(x)cos((t^(2)+2t+1)/(5))dt0>x>2 then f(x)

Let f(x)=e^((P+1)x)-e^(x) for real number Pgt0, then Let g(t)=int_(t)^(t+1)f(x)e^(t-x)dx. The value of t=t_(P), for which g(t) is minimum, is

For x>0, let f(x)=int_(1)^(x)(log t)/(1+t)dt. Find the function f(x)+f((1)/(x)) and find the value of f(e)+f((1)/(e))