Home
Class 12
MATHS
A Function f(x) satisfies the relation ...

A Function `f(x)` satisfies the relation `f(x)=e^x+int_0^1e^xf(t)dtdot` Then (a)`f(0)<0` (b)`f(x)` is a decreasing function. (c)`f(x)` is an increasing function. (d)`int_0^1f(x)dx >0`

Promotional Banner

Similar Questions

Explore conceptually related problems

A continuous function f(x) satisfies the relation f(x)=e^(x)+int_(0)^(1)e^(x)f(t)dt then f(1)=

Find f(x) if it satisfies the relation f(x)=e^(x)+int_(0)^(1)(x+ye^(x))f(y)dy

A derivable function f(x) satisfies the relation f(x)=int_(0)^(1)xf(t)dt+int_(0)^(x)x^(2)f(t)dt. The value of (2f'(1))/(f(1)) is

A function f(x) satisfies f(x)=sin x+int_(0)^(x)f'(t)(2sin t-sin^(2)t)dt is

Let y=f(x) satisfies the equation f(x)=(e^(-x)+e^(x)) cosx-2x-int_(0)^(x)(x-t)f'(t)dt. The value of f'(0)+f''(0)equals to

If a differentiable function f(x) satisfies f(x)=int_(0)^(x)(f(t)cos t-cos(t-x))dt then value of (1)/(e)(f''((pi)/(2))) is

Let y=f(x) satisfies the equation f(x) = (e^(-x)+e^(x))cosx-2x-int_(0)^(x)(x-t)f^(')(t)dt

Let y=f(x) satisfies the equation f(x) = (e^(-x)+e^(x))cosx-2x+int_(0)^(x)(x-t)f^(')(t)dt The value of f(0)+f^(')(0) equal

Function f satisfies the relation f(x)+2f((1)/(1-x))=x AA x in R-{1,0} then f(2) is equal to

Let f be a continuous function satisfying the equation int_(0)^(x)f(t)dt+int_(0)^(x)tf(x-t)dt=e^(-x)-1 , then find the value of e^(9)f(9) is equal to…………………..