Home
Class 12
MATHS
The value of the integral int0^(2a)[(f...

The value of the integral `int_0^(2a)[(f(x))/({f(x)+f(2a-x)})]dx "is equal to "a`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in [0,a] . Then, the value of the integral int_(0)^(a) (1)/(1+e^(f(x)))dx is equal to

If f(x) is a continuous function satisfying f(x)=f(2-x) , then the value of the integral I=int_(-3)^(3)f(1+x)ln ((2+x)/(2-x))dx is equal to

int_(0)^( If )(f(t))dt=x+int_(x)^(1)(t^(2)*f(t))dt+(pi)/(4)-1 then the value of the integral int_(-1)^(1)(f(x))dx is equal to

Let f(x)=int _( z )^(2) (dy)/(sqrt(1+ y ^(3))). The value of the integral int _(0)^(2) xf (x ) dx is equal to:

The value of the integral int_(-2018)^(2018)(f'(x)+f'(-x))/(2018^(x)+1)dx is equal to

What is int_0^a (f(a -x))/(f(x) +f(a-x))dx equal to ?

Prove that int_0^(2a) f(x)/(f(x)+f(2a-x))dx=a

The value of the integral int f_(0)^(2)|x^(2)-1|dx is

I=int_(0)^(2)(e^(f(x)))/(e^(f(x))+e^(f(2-x)))dx is equal to