Home
Class 12
MATHS
If Dr=|[r,n+1,1],[r^2,2n-1,(2n+1)/3],[r^...

If `Dr=|[r,n+1,1],[r^2,2n-1,(2n+1)/3],[r^3,3n+2,(n(n+1))/2]|`, show that `sum_(r=1)^n Dr=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let Delta_r=|[r-1,n,6],[(r-1)^2,2n^2,4n-2],[(r-1)^3,3n^3,3n^2-3n]| . Show that sum_(r=1)^n Delta_r is contant.

Let Delta_r=|[r-1,n,6],[(r-1)^2,2n^2,4n-2],[(r-1)^3,3n^3,3n^2-3n]| . Show that sum_(r=1)^n Delta_r is contant.

Let Delta_r=|[r , x , (n(n+1))/2] , [2r-1 , y , n^2] , [3r-2 , z , (n(3n-1))/2]|dot Show that sum_(r=1)^n Delta_r=0

Let Delta_r=|[r , x , (n(n+1))/2] , [2r-1 , y , n^2] , [3r-2 , z , (n(3n-1))/2]|dot Show that sum_(r=1)^n Delta_r=0

If S_r = |[2r,x,n(n+1)],[6r^2-1,y,n^2(2n+3)],[4r^3-2nr,z,n^3(n+1)]| then sum_(r=1)^nS_r does not depend on-

Let "Delta"_r=|r x(n(n+1))/2 2r-1y n^2 3r-2z(n(3n-1))/2| . Show that sum_(r=1)^n"Delta"_r=0 .

Let Delta_r=|{:(r,2r-1,3r-2),(n/2,n-1,a),((n(n-1))/2,(n-1)^2,1/2(n-1)(3n-4)):}| Show that sum_(r=1)^(n-1)Delta_r=0

Let Delta_(r)=|(r-1,n,6),((r-1)^(2),2n^(2),4n-2),((r-1)^(3),3n^(3),3n^(2)-3n)| Show that sum_((r=1)) ^(n) Delta_(r) is constant.