Home
Class 12
MATHS
A continuous real function f satisfies ...

A continuous real function `f` satisfies `f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1,` then find the value of `int_1^2f(x)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

A continuous real function f satisfies f(2x)=3(f(x)AA x in R. If int_(0)^(1)f(x)dx=1 then find the value of int_(1)^(2)f(x)dx

f(0)=1 , f(2)=e^2 , f'(x)=f'(2-x) , then find the value of int_0^(2)f(x)dx

Let f:R to R be continuous function such that f(x)=f(2x) for all x in R . If f(t)=3, then the value of int_(-1)^(1) f(f(x))dx , is

A continuous function f(x) satisfies the relation f(x)=e^(x)+int_(0)^(1)e^(x)f(t)dt then f(1)=

Evaluate: int_(-1)^(4)f(x)dx=4 and int_(2)^(4)(3-f(x))dx=7 then find the value of int_(2)^(-1)f(x)dx

If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0 , then find the value of int_(0)^(a)(dx)/(1+f(x)) .

A continous function f(x) is such that f(3x)=2f(x), AA x in R . If int_(0)^(1)f(x)dx=1, then int_(1)^(3)f(x)dx is equal to

Let f be a continuous function satisfying f(x + y) = f (x) f( y) (x, y in R) with f(1) = e then the value of int(xf(x))/(sqrt(1+f(x)))dx is