Home
Class 11
MATHS
Let P (sin theta, cos theta) (0 le theta...

Let `P (sin theta, cos theta)` `(0 le theta le 2pi)` be a point and let OAB be a triangle with vertices `(0,0) , (sqrt(3/2),0) and (0,sqrt(3/2))` Find `theta` if P lies inside `triangle OAB`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let P(sin theta,cos theta)(0<=theta<=2 pi) be a point and let OAB be a triangle with vertices (0,0),(sqrt((3)/(2)),0) and (0,sqrt((3)/(2))) Find theta if P lies inside /_OAB

Let P ("sin" theta, "cos"theta),(0 le theta le 2pi) , be a point in a triangle with vertices (0,0), (sqrt(3/2), 0) " and " (0,sqrt(3/2)) . Then ,

Let P(sin theta,cos theta)(theta belongs to 0 to 2 pi) be apoint and OAB be a triangle with vertices (0,0),(sqrt((3)/(2)),0) and (0,sqrt((3)/(2)),0). Find theta if P lies inside the AQAB.

sin theta -2 = cos2theta when 0 le theta le 2pi

Solve sin^(2) theta-cos theta=1/4, 0 le theta le 2pi .

Solve sin^(2) theta-cos theta=1/4, 0 le theta le 2pi .

Solve sin^(2) theta-cos theta=1/4, 0 le theta le 2pi .

Solve sin^(2) theta-cos theta=1/4, 0 le theta le 2pi .

Solve sin^(2) theta-cos theta=1/4, 0 le theta le 2pi .