Home
Class 12
MATHS
A function f is defined by f(x)=|x|^m|x-...

A function `f` is defined by `f(x)=|x|^m|x-1|^nAAx in Rdot` The local maximum value of the function is `(m ,n in N),` `1` (b) `m^nn^m` `(m^m n^n)/((m+n)^(m+n))` (d) `((m n)^(m n))/((m+n)^(m+n))`

Promotional Banner

Similar Questions

Explore conceptually related problems

A function f is defined by f(x)=|x|^(m)|x-1|^(n)AAx inR . The local maximum value of the function is , (m,ninN)

A function f is defined by f(x)=|x|^m|x-1|^nAAx in Rdot The local maximum value of the function is (m ,n in N) (a) 1 (b) m^n.n^m (c) (m^m n^n)/((m+n)^(m+n)) (d) ((m n)^(m n))/((m+n)^(m+n))

A function f is defined by f(x)=|x|^m|x-1|^nAAx in Rdot The local maximum value of the function is (m ,n in N) (a) 1 (b) m^n.n^m (c) (m^m n^n)/((m+n)^(m+n)) (d) ((m n)^(m n))/((m+n)^(m+n))

A function f is defined by f(x)=|x|^(m)|x-1|^(n)AA x in R. The local maximum value of the function is (m,n in N),1( b) m^(n)n^(m)(m^(m)n)/((m+n)^(m+n))(d)((mn)^(m+n))/((m+n)^(m+n))

The minimum value of the fuction f(x) given by f(x)=x^m/m+x^(−n)/n where 1/m+1/n=1 and m>1 is

Let m and n be positive integers and x,y gt 0 and x+y =k, where k is constant. Let f (x,y) = x ^(m)y ^(n), then: (a) f (x,y) is maximum when x= (mk)/(m+n) (b) f (x,y) is maximuim where x =y (c) maximum value of f (x,y) is (m^(n)n ^(m) k ^(m+n))/((m+n)^(m+n)) (d) maximum value of f (x,y) is (k ^(m+n) m ^(m)n ^(n))/((m+n)^(m+n))

lim_(x rarr a)(x^(m)-a^(m))/(x^(n)-a^(n))=((m)/(n))a^(m-n) if m>n

The minimum value of the fuction f(x) given by f(x)=(x^m)/(m)+(x^(-n))/(n) " where " 1/m+1/n =1" and " m gt 1 is

The minimum value of the fuction f(x) given by f(x)=(x^m)/(m)+(x^(-n))/(n) " where " 1/m+1/n =1" and " m gt 1 is

(m+n)(m+n)(m+n)(m-n)(m-n)(m-n)=m^(6)-n^(6) . (True/False)