Home
Class 12
MATHS
The value of int0^(pi/2) sin|2x-alpha|d...

The value of `int_0^(pi/2) sin|2x-alpha|dx,` where `alpha in [0,pi],` is (a) `1-cos alpha` (b) `1+cos alpha` (c) `1` (d) `cos alpha`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(pi)(x dx)/(1+cos alpha sin x) ,where 0lt alpha lt pi .

The value of int sqrt((1-cos x)/(cos alpha-cos x))dx where 0

The value of the integral int_(0)^(pi) (xdx)/(1+cos alpha sinx), 0 lt alpha lt pi , is

If the value of cos9^(@)-sin9^(@)=sqrt(2)sin alpha where a in[0,3 pi], then the value of 'alpha' can be -

If alpha=(pi)/(7), then find the value of ((1)/(cos alpha)+(2cos alpha)/(cos2 alpha))

If alpha=(pi)/(7) then find the value of ((1)/(cos alpha)+(2cos alpha)/(cos2 alpha))

If sin alpha=-3/6, alpha in [0,2pi] then the possible values of cos (alpha/2) , is/are

The number of ordered pairs (alpha,beta) , where alpha,beta in(-pi,pi) satisfying cos(alpha-beta)=1 and cos(alpha+beta)=(1)/(e) is

If alpha=(pi)/(17), show that (cos alpha cos13 alpha)/(cos3 alpha+cos5 alpha)=-(1)/(2)

int_ (0) ^ (pi) (sin x) / (1 + cos ^ (2) x) dx = pi (cos alpha) / (1 + sin ^ (2) alpha)