Home
Class 12
MATHS
if f(x)=|[cosx,1,0],[1,2cosx,1],[0,1,2co...

if `f(x)=|[cosx,1,0],[1,2cosx,1],[0,1,2cosx]|` then `int_0^(pi/2) f(x)dx` is equal to (A) `1/4` (B) `-1/3` (C) `1/2` (D) `1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=|(2cosx,1,0),(1,2cosx,1),(0,1,2cosx)| then

if f(x)=|[2cosx,1,0],[x-pi/2,2cosx,1],[0,1,2cosx]| then (df)/(dx) at x=pi/2 is

if f(x)=[[cosx,1,0],[1,2cosx,1],[0,1,2cosx]], then int_0^(pi/2) f(x)dx = (i)-1/3 (ii)1/4 (iii)1/2 (iv)none of these

Let f(x) = |{:(cos x ,1,0 ),(1,2cosx,1),(0,1,2cosx):}| then

Let f(x) = |{:(cos x ,1,0 ),(1,2cosx,1),(0,1,2cosx):}| then

Let f(x) = |{:(cos x ,1,0 ),(1,2cosx,1),(0,1,2cosx):}| then

Let f(x) = |{:(cos x ,1,0 ),(1,2cosx,1),(0,1,2cosx):}| then

int_(0)^(pi) (1)/(1+3^(cosx)) dx is equal to

If f(x) =|{:(cosx,1,0),(1,2 cosx,1),(0,1,2 cosx):}|, "then" |overset(pi//2)underset(0)intf(x)dx| is equal to