Home
Class 12
MATHS
The value of int1^a[x]f^(prime)(x)dxf^(p...

The value of `int_1^a[x]f^(prime)(x)dxf^(prime)(x)dx `,where `a >1`, and `[x]` denotes the greatest integer not exceeding x, is (A) `af(a)-{f(1)f(2)+.....+f([a])}` (B) `[a]f(a)-{f(1)+f(2)+......+f([a])}` (C) `[a]f(a)-{f(1)+f(2)+.......+fA}` (D) `af([a])-{f(1)+f(2)+......+fA}`

Promotional Banner

Similar Questions

Explore conceptually related problems

" Q."5" The value of int_(1)^(a)[x]f'(x)dx,a>1 ,where "[x]" denotes the greatest integer not exceeding is "

If f:Rto[-1,1] where f(x)=sin((pi)/2[x]), (where [.] denotes the greatest integer fucntion), then

If f:Irarr I be defined by f(x)=[x+1] ,where [.] denotes the greatest integer function then f(x) is equal to

The value of int_(-10)^(10)[{f(f(x)}xx{f(f((1)/(x))}]dx , where f(x)=(1-x)/(1+x)

Let f(x)=1+|x|,x =-1, where [* denotes the greatest integer function.Then f{f(-2.3)} is equal to

f(x)=abs([x]x) -1lexle2 , then f(x) is (where [ast] denotes greatest integer lex )

If f(x)=|x-1|([x]-[-x]), then find f'(1^(+))&f'(1^(-)) where [x] denotes greatest integer function

If domain of f(x) is [-1,2] then domain of f(x]-x^(2)+4) where [.] denotes the greatest integer function is

If f:R rarr R is defined by f(x)=x-[x]-(1)/(2). for x in R, where [x]is the greatest integer exceeding x, then {x in R:f(x)=(1)/(2)}=