Home
Class 12
MATHS
The value of int0^x[cost]dt ,x in [(4n+1...

The value of `int_0^x[cost]dt ,x in [(4n+1)pi/2,(4n+3)pi/2]a n dn in N ,` is equal to where [.] represents greatest integer function. `pi/2(2n-1)-2x` `pi/2(2n-1)+x` `pi/2(2n+1)-x` (d) `pi/2(2n+1)+x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int_(0)^(x)[cos t]dt where x in(2n pi,4n+1(pi)/(2)),n in N, and.] denotes the greatest integer function.

int_(0)^(x)[sin t]dt, where x in(2n pi,(2n+1)pi),n in N, and [.] denotes the greatest integer function is equal to -n pi(b)-(n+1)pi2n pi(d)-(2n+1)pi

f(x)=lim_(n rarr oo)sin^(2n)(pi x)+[x+(1)/(2)], where [.] denotes the greatest integer function,is

If f(n)=int_(0)^(x)[cos t]dt, where x in(2n pi,2n pi+(pi)/(2));n in N and [*] denotes the greatest integer function.Then, the value of f((1)/(pi))| is ...

Solve int root(3)(sin x)*cos xdx for x in [2n pi,(2n+1)pi]

If (1+sin2x)(1-sin2x)=cot^(2)(a+x)AA x in R-(n pi+(pi)/(4)),n in N then a is equal to

The value of I=int_(0)^(pi//4)(tan^(*n+1)x)dx+(1)/(2)int_(0)^(pi//2)tan^(n-1)((x)/(2))dx is equal to

int_(0)^(x)|sin t|dt, where x in(2n pi,(2n+1)pi)n in N, is equal to (A)4n-cos x(B)4n-sin x(C)4n+1-cos x(D)4n-1-cos x

The equatin 2x = (2n +1)pi (1 - cos x) , (where n is a positive integer)