Home
Class 12
MATHS
Let f(x)=int2^x (dt)/sqrt(1+t^4) and g ...

Let `f(x)=int_2^x (dt)/sqrt(1+t^4) and g` be the inverse of `f`. Then, the value of `g'(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int_(2)^(x)(dt)/(sqrt(1+t^(4)) and g be the inverse of f. Then , the value of g'(0) is

Let f(x)=int_(2)^(x)(dt)/(sqrt(1+t^(4))) and g be the inverse of f then the value of g^(')(0) is

Let f(x)=int_(x)^(3)(dt)/(sqrt(1+t^(5))) and g be the inverse of f. Then the value of g'(0) is equal to

Let f(x)=int_(4)^(x)(dt)/(sqrt(1+t^(3))) and g be the inverse of f ,then the value of g'(0) is equal to

Let f(x)=int_(0)^(x)(dt)/(sqrt(1+t^(3))) andg(x) be the inverse of f(x). Then the value of 4(g'(x))/((g(x))^(2))is_(--)

Let f(x)=int_(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x) . Then the value of 4 (g''(x))/(g(x)^(2)) is________.

Let f:R rarr R be defined by f(x)=x^(3)+3x+1 and g be the inverse of f .Then the value of g'(5) is equal to

Let f(x)=x^(2)-4x-3,x>2 and let g be the inverse of f. Find the value of g', where f(x)=2

Let f: R rarr R defined by f(x)=x^(3)+3x+1 and g is the inverse of 'f' then the value of g'(5) is equal to