Home
Class 12
MATHS
STATEMENT 1: Let m be any integer. Then ...

STATEMENT 1: Let `m` be any integer. Then the value of `I_m=int_0^pi(sin2m x)/(sinx)dxi sz e rodot` STATEMENT 2 : `I_1=I_2=I_3==I_m`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let m be any integer. Then, the integral int_(0)^(pi) (sin 2m x)/(sin x)dx equals

The value of I=int_(0)^(pi//2)((sinx+cos)^(2))/(sqrt(1+sin2x))dx is

If I=int_(-pi/2)^(pi/2) 1/(1+e^(sinx))dx then I is

If m,n,p,q are consecutive integers then the value of i^(m)+i^(n)+i^(p)+i^(q) is

Let I_m=int_0^pi (1-cosmx)/(1-cosx)dx . Show that I_m=mpi .

If I_(n)=int_(0)^(pi)(1-sin2nx)/(1-cos2x)dx then I_(1),I_(2),I_(3),"….." are in

Consider the integral I_(m) = int_(0)^(pi) (sin2mx)/(sinx ) dx , where m is a positive integer. What is I_(2) + I_(3) equal to ?