Home
Class 12
MATHS
The matrix A^2 + 4 A-5I, where I is iden...

The matrix `A^2 + 4 A-5I`, where `I` is identity matrix and `A = [[1,2],[4,-3]]`equals : (A) `32[[1,1],[1,0]]` (B) `4[[2,1],[2,0]]` (C) `4[[0,-1],[2,2]]` (D) `32[[2,1],[2,0]]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If for a matrix A,A^2+I=0, where I is an identity matrix then A equals (A) [(1,0),(0,1)] (B) [(-1,0),(0,-1)] (C) [(1,2),(-1,1)] (D) [(-i,0),(0,-i)]

Verify that the matrix equation A^2 - 4a +3I =0 is satisfied by the matrix A = [[2,-1],[-1,2]] , where I = [[1,0],[0,1]] and 0= [[0,0],[0,0]] ,

If A= [(0,1,1),(0,0,1),(0,0,0)] is a matrix of order 3 then the value of the matrix (I+A)-2A^2(I-A), where I is a unity matrix is equal to (A) [(1,0,0),(1,1,0),(1,1,1)] (B) [(1,-1,-1),(0,1,-1),(0,0,1)] (C) [(1,1,-1),(0,1,1),(0,0,1)] (D) [(0,0,2),(0,0,0),(0,0,0)]

Select the correct option from the given alternatives. If A = [[0,1],[1,0]] the adjoint of the matrix A is i] [[0,-1],[-1,0]] ii] [[1,4],[-3,2]] iii] [[1,3],[4,-2]] iv] [[-1,-3],[-4,2]]

Find a matrix X such tht 3A-2B+X=0, where A=[[4,2],[1,3]] , B= [[-2,1], [3,2]]

Find a matrix X such tht 3A-2B+X=0, where A=[[4,2],[1,3]] , B= [[-2,1], [3,2]]

Let B=A^(3)-2A^(2)+3A-I where l is an identity matrix and A=[(1,3,2),(2,0,3),(1,-1,1)] then the transpose of matrix B is equal to

For 2 times 2 matrices A,B and I, if A+B=I and 2A-2B=I , then A equals 1) [[(1)/(4),0],[0,(1)/(4)]] 2) [[(1)/(2),0],[0,(1)/(2)]] 3) [[(3)/(4),0],[0,(3)/(4)]], 4) [[1,0],[0,1]]

If A=[[1],[2],[3]]" and "B=[[-5,4,0],[0,2,-1],[1,-3,2]] , then find BA

(b) Find the rank of the matrix [[1,-1,2,-1],[4,2,-1,2],[3,2,-2,0]]