Home
Class 12
MATHS
STATEMENT 1: The value of int0^(2pi)cos^...

STATEMENT 1: The value of `int_0^(2pi)cos^(99)x dxi s0` STATEMENT 2: `int_0^(2a)f(x)dx=2int_0^af(x)dx ,iff(2a-x)=f(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(2pi)cos^(99)x dx is

int_(0)^(2a)f(x)dx-int_(0)^(a)f(x)dx=

int_(0)^(2a)f(x)dx-int_(0)^(a)f(x)dx=

int_0^pi (cos^2x)dx ,

Prove that: int_(0)^(2a)f(x)dx=int_(0)^(2a)f(2a-x)dx

If : int_(0)^(2a)f(x)dx=2.int_(0)^(a)f(x)dx , then :

STATEMENT 1: The value of int_(0)^(1)tan^(-1)((2x-1)/(1+x-x^(2)))dx=0 STATEMENT 2:int_(a)^(b)f(x)dx=int_(0)^(b)f(a+b-x)dx

If int_(0)^(2a) f(x)dx=int_(0)^(2a) f(x)dx , then

Evaluate: int_0^pi x/(1+cos^2x)dx