Home
Class 12
MATHS
Let f(x) be a non-constant twice differ...

Let `f(x)` be a non-constant twice differentiable function defined on `(-oo,oo)` such that `f(x)=f(1-x)a n df^(prime)(1/4)=0.` Then (a)`f^(prime)(x)` vanishes at least twice on `[0,1]` (b)`f^(prime)(1/2)=0` (c)`int_(-1/2)^(1/2)f(x+1/2)sinxdx=0` (d)`int_(-1/2)^(1/2)f(t)e^(sinpit)dt=int_(1/2)^1f(1-t)e^(sinpit)dt`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a non-constant twice differentiable function defined on (oo,oo) such that f(x)=f(1-x) and f'(1/4)=0^(@). Then

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

If f(x)=int_(0)^(x){f(t)}^(-1)dt and int_(0)^(1){f(t)}^(-1)=sqrt(2)

Let f(x) be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt then int_(0)^(1)f(x)dx=

If int_(0)^(1) f(t)dt=x^2+int_(0)^(1) t^2f(t)dt , then f'(1/2)is

if f(x) is a differential function such that f(x)=int_(0)^(x)(1+2xf(t))dt&f(1)=e , then Q. int_(0)^(1)f(x)dx=

If int_(0)^(x^(2)(1+x))f(t)dt = x then find f(2)