Home
Class 12
MATHS
Prove that int0^1tan^(-1)(1/(1-x+x^2))d...

Prove that `int_0^1tan^(-1)(1/(1-x+x^2))dx=2int_0^1tan^(-1)x dxdot` Hence or otherwise, evaluate the integral `int_0^1tan^(-1)(1-x+x^2)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: int_0^1tan^-1.(1/(1-x+x^2))dx=2int_0^1tan^-1xdx

int_(0)^(1)tan^(-1)(1-x+x^(2))dx=

Prove that int_0^1 tan^-1((2x-1)/(1+x-x^2))dx=0

int_(0)^(x)tan^(-1)(1-x+x^(2))dx

inte^(tan^-1x)(1+x/(1+x^2))dx

int_0^1 tan^1x/(1+x^2)dx

Evaluate the following integral: int_0^1tan^(-1)x\ dx

int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

int_0^1 tan^(-1)((1)/(x^(2)-x+1))dx