Home
Class 12
MATHS
Iff(x)=inta^x[f(x)]^(-1)dxa n dinta^1[f(...

`Iff(x)=int_a^x[f(x)]^(-1)dxa n dint_a^1[f(x)]^(-1)dx=sqrt(2),t h e n` `f(2)=2` (b) `f^(prime)(2)=1/2` `f^(prime)(2)=2` (d) `int_0^1f(x)dx=sqrt(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_(0)^(x){f(t)}^(-1)dt and int_(0)^(1){f(t)}^(-1)=sqrt(2)

If f(x) =int_(0)^(x) {f(t)}^(-1)dt, " and " int_(0)^(1) {f(t}^(-1)dt=sqrt(2) , then f(x)=

int_(n)^(n+1)f(x)dx=n^(2)+n then int_(-1)^(1)f(x)dx=

if f(x)=|x-1| then int_(0)^(2)f(x)dx is

f(x) = int(x^(2)+x+1)/(x+1+sqrt(x))dx , then f(1) =

If f(x)=|"cos"(x+x^2)"sin"(x+x^2)-"cos"(x+x^2)"sin"(x-x^2)"cos"(x-x^2)sin(x-x^2)sin2x0sin2x^2|,t h e n f(-2)=0 (b) f^(prime)(-1/2)=0 f^(prime)(-1)=-2 (d) f^(0)=4

If int_(0)^(1)f(x)dx=1 and int_(1)^(2)f(y)dy=2 , then int_(0)^(2)f(z)dz=

If f(x)+f(2-x)=0 , then int_(0)^(2)(1)/(1+2^(f(x)))dx=

If f(x)+f(2-x)=0 , then int_(0)^(2)(1)/(1+2^(f(x)))dx=