Home
Class 10
MATHS
sin((B+C)/(2))=cos(A)/(2)...

sin((B+C)/(2))=cos(A)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

In triangle ABC,a,b,c are the lengths of its sides and A,B,C are the angles of triangle ABC .The correct relation is given by (a) (b-c)sin((B-C)/(2))=a(cos A)/(2) (b) (b-c)cos((A)/(2))=as in(B-C)/(2)(c)(b+c)sin((B+C)/(2))=a(cos A)/(2)(d)(b-c)cos((A)/(2))=2a(sin(B+C))/(2)

For triangle ABC, show that: sin((A+B)/(2))-cos(C)/(2)=0

For any triangle ABC ,prove that (a-b)/(c)=(sin((A-B)/(2)))/(cos(C)/(2))

If A+B+C=pi , prove that: "sin" A+"sin" B-"sin" C=4 "sin"(A)/(2)"sin"(B)/(2)"cos"(C)/(2) .

If A, B, C are angles in a triangle , prove that sin A+ sin B -sin C =4sin. (A)/(2)sin. (B)/(2) cos. (C)/(2)

Which of the following is true in a triangle ABC?(1)(b+c)sin((B_(C))/(2))=2a cos((A)/(2))(2+c)cos((A)/(2))=2a sin((B-C)/(2))

In any triangle ABC prove that: sin((B-C)/(2))=((b-c)/(a))(cos A)/(2)

In any triangle ABC, prove that following: sin((B-C)/(2))=(b-c)/(a)(cos A)/(2)

For any triangle ABC, prove that (a-b)/c=(sin((A-B)/2))/(cos(C/2))

For any triangle ABC, prove that : (a-b)/(c )=(sin((A-B)/(2)))/(cos((C)/(2)))