Home
Class 12
MATHS
If (a-1)x^2-(a+1)x+(a+1)>0AAx in R, the...

If `(a-1)x^2-(a+1)x+(a+1)>0AAx in R,` then range of a is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(1)/(1+|x|) ; x in R the range of f is

If x^2+2a x+a<0AAx in [1,2], the find the values of a .

Let f: R to R be defined by f(x)=(x)/(1+x^(2)), x in R. Then, the range of f is (A) [-(1)/(2),(1)/(2)] (B) (-1,1)-{0} (C) R-[-(1)/(2),(1)/(2)] (D) R-[-1,1]

Let f: R to R be defined by f(x)=(x)/(1+x^(2)), x in R. Then, the range of f is (A) [-(1)/(2),(1)/(2)] (B) (-1,1)-{0} (C) R-[-(1)/(2),(1)/(2)] (D) R-[-1,1]

Let f(x) be a function such that 2f(x)+f((x+1)/(x-1))=x. AAx in R-{1}dot If 3f(x)+f((x+1)/(x-1))=lambdax. AAx in R-{1}, then value of lambda is

If x^2+2a x+a<0AAx in [1,3], the find the values of adot

If f(x)+f(1-x)=2 and g(x)=f(x)-1AAx in R , then g(x) is symmetric about

Consider the function f(x)=m x^2+(2m-1)x+(m-2) If f(x)>0AAx in R then

A : The range of Sin^(-1)2x+Cos^(-1)2x" is "{pi} R : The range of Sin^(-1)x+Cos^(-1)x" is "{pi//2}

If the equation x^2+2a x+a<0AAx in [1,2], the find the values of adot