Home
Class 12
MATHS
Q. tan^-1x+tan^-1y=pi+tan^-1((x+y)/(1-xy...

Q. tan^-1x+tan^-1y=pi+tan^-1((x+y)/(1-xy)) if x,y>0 and xy>0 Q. cos^-1x+cos^-1y=2pi-cos^-1(xy-sqrt(1-x^2)sqrt(1-y^2)) if x+y<0

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)x+tan^(-1)y=pi+tan^(-1)((x+y)/(1-xy))

tan^-1 x + tan^-1y= tan^-1 (frac{x+y}{1-xy} ).

tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) holds good for

tan^-1 x - tan^-1 y= tan^-1 (frac{x-y}{1+xy} .

tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) holds good for

sin^(-1)x+sin^(-1)y=cos^(-1)""{sqrt((1-x^(2))(1-y^(2)))-xy}

sin^(- 1)x+sin^(- 1)y=cos^(- 1) (sqrt(1-x^2) sqrt(1-y^2)-xy) if x in [0,1], y in [0,1]

Prove that tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)),xygt-1

show that: Tan^-1x+tan^-1y = tan^-1(frac{x+y}{1-xy})

sin^(-1)x+sin^(-1)y=cos^(-1)(sqrt(1-x^(2))sqrt(1-y^(2))-xy) if x in[0,1],y in[0,1]