Home
Class 11
MATHS
" 22.If "cot x(1+sin x)=4m" and "cot x(1...

" 22.If "cot x(1+sin x)=4m" and "cot x(1-sin x)=4n," prove that "(m^(2)-n^(2))^(2)=mn

Promotional Banner

Similar Questions

Explore conceptually related problems

If cot theta(1+sin theta)=4man d cot theta(1-sin theta)=4n prove that (m^(2)-n^(2))^(2)=mn

If cot theta (1 + sin theta ) = 4m and cot theta (1 - sin theta ) = 4n, prove that (m^(2) - n^(2))^(2) = mn.

if m=tan x+sin x and n=tan x-sin x then prove that m^(2)-n^(2)=4sqrt(mn)

If sin x+cos x=m and sec x+cos ecx=n prove that n(m^(2)-1)=2m

If tan A + sin A = m and tan A - sin A = n, prove that : m^(2) - n^(2) = 4 sqrt (mn)

If tan (cot x) = cot (tan x) , prove that : sin 2x = 4/((2n+1) pi)

If tan(cot x)=cot(tan x), prove that :sin2x=(4)/((2n+1)pi)

If x cos A + y sin A = m and x sin A - y cos A = n, then prove that : x^(2) + y^(2) = m^(2) + n^(2)

If cot theta + cos theta = m and cot theta - cos theta = n then prove that: m^(2) - n^(2) = 4sqrt(mn)

Prove that cot 4 x(sin 5 x+sin 3 x)=cot x(sin 5 x-sin 3 x)