Home
Class 12
MATHS
" (i) "sin^(-1)((sin x+cos x)/(sqrt(2)))...

" (i) "sin^(-1)((sin x+cos x)/(sqrt(2))),(pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

Express sin^(-1)((sin x+ cos x)/(sqrt2)) , where -(pi)/(4) lt x lt (pi)/(4) , in the simplest form.

Express sin^(-1)((sin x+ cos x)/(sqrt2)) , where -(pi)/(4) lt x lt (pi)/(4) , in the simplest form.

cos^(-1)((sin x+cos x)/(sqrt(2))),(pi)/(4) lt x lt (5pi)/4

Differentiate the following function with respect to x:sin^(-1){(sin x+cos x)/(sqrt(2))}-(3 pi)/(4)

Simplify: ^(*)sin^(^^)(-1)((sin x+cos x)/(sqrt(2))),backslash-pi/4

Differentiate the functions with respect to x:cos^(-1){(cos x+sin x)/(sqrt(2))},-(pi)/(4)

Prove that cos^-1 ((sin x + cos x )/(sqrt2)) = x - (pi/4), (pi/4) le x le ((5pi)/4)

Show that : int_(0)^((pi)/(2))(sin^(2)x)/(sin x+cos x)dx=(1)/(sqrt(2))log(sqrt(2)+1)

If I=int(sqrt(cot x)-sqrt(tan x))dx, then I equal sqrt(2)log(sqrt(tan x)-sqrt(cot x))+Csqrt(2)log|sin x|cos x+sqrt(sin2x)|+Csqrt(2)log|sin x-cos x+sqrt(2)sin x cos x|+sqrt(2)log|sin(x+(pi)/(4))+sqrt(2)sin x cos x|+C

Prove that (i) "cos " ((pi)/(3) +x) =(1)/(2) ( " cos " x - sqrt(3) sin x) (ii) " sin " ((pi)/(4) + x) + " sin " ((pi)/(4)-x) =sqrt(2) " cos " x (iii) (1)/(sqrt(2)) " cos ((pi)/(4) + x) = (1)/(2) " (cos x - sin x) " (iv) " cos x + cos " ((2pi)/(3) +x) + " cos " ((2pi)/(3)-x) =0