Home
Class 12
MATHS
sum(n=1)^(n+1)(sum(k=1)^(n)k(r-1))=-...

sum_(n=1)^(n+1)(sum_(k=1)^(n)k_(r-1))=-

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(r=1)^(n+1)(sum_(k=1)^(n)C(k,r-1))=

The value of sum_(r=1)^(n+1)(sum_(k=1)^n ^kC_(r-1)) (where r, k, n in N ) is equal to

The value of sum_(r=1)^(n+1)(sum_(k=1)^(k)C_(r-1))( where r,k,n in N) is equal to a.2^(n+1)-2b2^(n+1)-1c.2^(n+1)d. none of these

The value of sum_(r=1)^(n+1)(sum_(k=1)^n "^k C_(r-1)) ( where r ,k ,n in N) is equal to a. 2^(n+1)-2 b. 2^(n+1)-1 c. 2^(n+1) d. none of these

The value of sum_(r=1)^(n+1)(sum_(k=1)^n "^k C_(r-1)) ( where r ,k ,n in N) is equal to a. 2^(n+1)-2 b. 2^(n+1)-1 c. 2^(n+1) d. none of these

If sum_(r=1)^(n)t_(r)=sum_(k=1)^(n)sum_(j=1)^(k)sum_(i=1)^(j)2, then sum_(r=1)^(n)(1)/(t_(r))=

Let f(n)=(sum_(r=1)^(n)((1)/(r)))/(sum_(k=1)^(n)(k)/(2n-2k+1)(2n-k+1))

If lim_(n rarr oo)(sum_(r=1)^(n)sqrt(r)sum_(r=1)^(n)(1)/(sqrt(r)))/(sum_(r=1)^(n)r)=(k)/(3) then the value of k is

For which positive integers n is the ratio (sum_(k=1)^(n)k^(2))/(sum_(k=1)^(n)k) an integer?

For which positive integers n is the ratio, (sum+(k=1)^(n) k^(2))/(sum_(k=1)^(n) k) an integer ?