Home
Class 12
MATHS
" (v) "x^(2)+y^(2)-xy=c...

" (v) "x^(2)+y^(2)-xy=c

Promotional Banner

Similar Questions

Explore conceptually related problems

x-x^(2)y+xy^(2)-y

If a=(x)/(x+y) and b=(y)/(x-y), then (ab)/(a+b) is equal to (a) (xy)/(x^(2)+y^(2)) (b) (x^(2)+y^(2))/(xy)( c) (x)/(x+y) (d) ((y)/(x+y))^(2)

The locus of the foot of the perpendicular from the centre of the hyperbola xy=c^(2) on a variable tangent is (A) (x^(2)-y^(2))=4c^(2)xy(B)(x^(2)+y^(2))^(2)=2c^(2)xy(C)(x^(2)+y^(2))=4c^(2)xy(D)(x^(2)+y^(2))^(2)=4c^(2)xy

Prove that the locus of the mid-points of chords of length 2d unit of the hyperbola xy=c^(2) is (x^(2)+y^(2))(xy-c^(2))=d^(2)xy.

If a hyperbola be rectangular,and its equation be xy=c^(2), prove that the locus of the middle points of chords of constant length 2d is (x^(2)+y^(2))(xy-c^(2))=d^(2)xy

Find (x+y)^(2) - (x-y)^(2) ? A. 2x^(2)y^(2) B. 4xy C. 2x^(2)+2y^(2) D. x^(2)-y^(2)+2xy

The differential equations of all circle touching the x-axis at orgin is (a) (y^(2)-x^(2))=2xy((dy)/(dx)) (b) (x^(2)-y^(2))(dy)/(dx)=2xy ( c ) (x^(2)-y^(2))=2xy((dy)/(dx)) (d) None of these

The differential equations of all circle touching the x-axis at orgin is (a) (y^(2)-x^(2))=2xy((dy)/(dx)) (b) (x^(2)-y^(2))(dy)/(dx)=2xy ( c ) (x^(2)-y^(2))=2xy((dy)/(dx)) (d) None of these

The differential equations of all circle touching the x-axis at orgin is (a) (y^(2)-x^(2))=2xy((dy)/(dx)) (b) (x^(2)-y^(2))(dy)/(dx)=2xy ( c ) (x^(2)-y^(2))=2xy((dy)/(dx)) (d) None of these