Home
Class 12
MATHS
If g(x)=int1^x(e^(t^2))dt then the value...

If g(x)=`int_1^x(e^(t^2))dt` then the value of `int_3^(x^3)(e^(t^2))dt` equals (A) `g(x^3)-g(3)` (B) `(g(x^3)+g(3)` (C) `g(x^3)-3` (D) `g(x^3)-3g(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(-3)^(3)g(x)dx is

if g(x^(3)+1)=x^(6)+x^(3)+2 then the value of g(x^(2)-1) is

If g(x)=int_(0)^(x)cos^(4)t dt, then g(x+pi) equals to (a) (g(x))/(g(pi)) (b) g(x)+g(pi) (c) g(x)-g(pi) (d) g(x).g(pi)

If g(x)=int_(0)^(x)cos^(4)t dt, then g(x+pi) equals to (a) (g(x))/(g(pi)) (b) g(x)+g(pi) (c) g(x)-g(pi) (d) g(x).g(pi)

If g(x)=int_0^x(|sint|+|cost|)dt ,t h e ng(x+(pin)/2) is equal to, where n in N , a) g(x)+g(pi) (b) g(x)+ng((pi)/(n2)) c) g(x)+g(pi/2) (d) none of these

int3^(x)(g^(1)(x)+g(x)ln3)dx is equal to

If g(x)""=int0xcos4t"dt" , then g(x""+pi) equals: (1) g(x)/(g(pi) (2) g(x)+g(pi) (3) g(x)-g(pi) (4) g(x)dotg(pi)

If g(x)=int_0^x cos4t\ dt ,\ t h e n\ g(x+pi) equals a. g(x)-g(pi) b. \ g(x)dotg(pi) c. (g(x))/(g(pi)) d. g(x)+g(pi)

If g(x)=(2x+3)^(2) , then g((x)/(3)-1)=

If g(x) is the inverse of f(x) and f'(x) = (1)/( 1+ x^3) , then g'(x) is equal to a) g(x) b) 1+g(x) c) 1+ {g(x)}^3 d) (1)/( 1+ {g(x)}^3)