Home
Class 12
MATHS
{x} denotes the fractional part of a rea...

`{x}` denotes the fractional part of a real no. x, then `lim_(x->0){ln(1+{x})/{x}}`

Promotional Banner

Similar Questions

Explore conceptually related problems

If {x} denotes the fractional part of x, then lim_(x to 0) ({x})/(tan {x}) is equal to

If {x} denotes the fractional part of x, then lim_(x to 0) ({x})/(tan {x}) is equal to

If {x} denotes the fractional part of x, then lim_(xrarr1) (x sin {x})/(x-1) , is

If {x} denotes the fractional part of x, then lim_(xrarr1) (x sin {x})/(x-1) , is

Let {x} denote the fractional part of xlim Then lim_(X rarr 0) ({x})/(tan {x}) equals :

if {x} represents the fractional part of x the value of lim_(x rarr0)[((1+{x})^((1)/(x)))/(e)]^((1)/({x})) is

Let {x} denote fractional part of x. Then lim_(x rarr0)((x)/(tan{x})) is equal to

lim_(x rarr0){(1+x)^((2)/(x))}( where {x} denotes the fractional part of x ) is equal to.

Evaluate the following limits (if exists), where {,} denotes the fractional part of x and [,] denotes the greatest integer part lim_(x rarr 0) [(1+x)^(1/x)+e(x-1)]/x

lim_(x rarr[a])(e^(x)-{x}-1)/({x}^(2)) Where {x} denotes the fractional part of x and [x] denotes the integral part of a.