Home
Class 11
MATHS
If (sin^4theta)/a+(cos^4theta)/b=1/(a+b)...

If `(sin^4theta)/a+(cos^4theta)/b=1/(a+b)` Prove that `(sin^8theta)/a^3+(cos^8theta)/b^3=1/(a+b)^3`

Text Solution

Verified by Experts

`(sin^(4)A)/(a^(3)) + (cos^(8)A)/(b^(3))= 1/(a+b)`
`rArr (a+b).((sin^(4)A)/(a) + (cos^(4)A)/(b))`
`=1=1^(2)=(sin^(2)A+cos^(4)A)`
`rArr sin^(4)A+a/bcos^(4)A+b/asin^(4)A+cos^(4)A=sin^(4)A + cos^(4)A+2sin^(2)A cos^(2)A`
`rArr A/b cos^(4)A-2sin^(2)A cos^(2)A+b/asin^(4)A=0`
`rArr (sqrt(a/b)cos^(2)A-sqrt(b/a)sin^(4)A)=0`
`rArr (sqrt(a/b)cos^(2)A- sqrt(b/a)sin^(2)A)^(2)=0`
`rArr sqrt(a/b)cos^(2)A-sqrt(b/a)sin^(2)A=0`
`rArr sqrt(a/b)cos^(2)A=sqrt(b/a)sin^(2)A`
`rArr a/b=(sin^(2)A)/(cos^(2)A)`
`rArr (sin^(2)A)/(a) = (cos^(2)A)/(b)= (sin^(2)A+cos^(2)A)/(a+b)`
`rArr sin^(2)A=a/(a+b)` and `cos^(2)A=b/(a+b)`
Now, LHS `=(sin^(8)A)/(a^(3))+(cos^(8)A)/(b^(3))`
`=1/a^(3).(a/(a+b))^(4) + 1/b^(3).(b/(a+b))^(4)`
`rArr sin^(2)=a/(a+b)` and `cos^(2)A=b/(a+b)`
Now, LHS `=(sin^(8)A)/(a^(3))+(cos^(8)A)/(b^(3))`
`=1/a^(3). (a/(a+b))^(4)+1/b^(3).(b/(a+b))^(4)`
`=(a/(a+b)^(4))+b/(a+b)^(4)=(a+b)/(a+b)^(4)`
`=1/(a+b)^(3)`= RHS. Hence poved.
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3A|11 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3B|22 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN|Exercise Exercise|206 Videos

Similar Questions

Explore conceptually related problems

If (sin^(4)theta)/(a)+(cos^(4)theta)/(b)=(1)/(a+b), prove that (sin^(8)theta)/(a^(3))+(cos^(4)theta)/(b^(3))=(1)/((a+b)^(3))(sin^(4n)theta)/(a^(2n-1))+(cos^(4n)theta)/(b^(2n-1))=(1)/((a+b)^(2n-1)),n in N

If (sin^(4)theta)/(a)+(cos^(4)theta)/(b)=(1)/(a+b), then (sin^(8)theta)/(a^(3))+(cos^(8)theta)/(b^(3))=

If sin((theta)/(2))=a,cos((theta)/(2))=b then (1+sin theta)/(3sin theta+4cos theta+5)=

if (cos^(2)theta)/(a)=(sin^(2)theta)/(b) then (cos^(4)theta)/(a)+(sin^(4)theta)/(b)=?

If sin theta+sin^(2)theta+sin^(3)theta=1, prove that cos^(6)theta-4cos^(4)theta+8cos^(2)=4

If sin theta=sqrt3/2 then prove that 4cos^3 theta-3cos theta=-1

Prove that (3 + cos 4theta) cos 2theta = 4(cos^(8)theta - sin^(8)theta) .

(sin 3 theta)/(sin theta)-(cos 3 theta)/(cos theta)= A) sin 2 theta B) cos 4 theta C)1D)2

Prove that-: cos^4theta/(1-sin^4theta)=(1-sin^2theta)/(1+sin^2theta)