Home
Class 11
MATHS
Prove that: i) sin40^(@)cos50^(@)+cos4...

Prove that:
i) `sin40^(@)cos50^(@)+cos40^(@)sin50^(@)=1`
ii) `cot(270^(@)-theta)cot(270^(@)+theta)(cot(540^(@)-theta)cot(540^(@)+theta)=1`
iii) `cospi/8+cos(3pi)/8+cos(5pi)/8+cos(7pi)/8=0`

Text Solution

Verified by Experts

LHS `=sin40^(@)cos50^(@)+cos40^(@)sin50^(@)`
`=sin40^(@)cos(90^(@)-40^(@))+cos40^(@)sin(90^(@)-40^(@))`
`=sin40^(@)+sin40^(@)+cos40^(@)cos40^(@)`
`=sin^(2)40^(@)+cos^(2)40^(@)=1=`RHS. Hence proved
ii) LHS `=cot(270^(@)-theta) cot(270^(@)+theta)cot(540^(@)-theta)`
`=tantheta(-tantheta).cot(360^(@)+(180^(@)-theta). cot(360^(@)+(180^(@)+theta))`
`-tan^(2)theta.cot(180^(@)-theta).cot(180^(@)+theta)`
`-tan^(2)theta(-cottheta)(cottheta)`
`-1/(cot^(2)theta)(-cot^(2)theta)`
=1=RHS Hence Proved.
iii) LHS`=(cospi)/8 + cos(3pi)/8+cos(5pi)/8+cos(7pi)/8`
`=cospi/8+cos(3pi)/8 + cos(pi-(3pi)/8)+cos(pi-pi/8)`
`=cospi/8+cos(3pi)/8-cos(3pi)/8-cospi/8`
=0 = RHS Hence proved.
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3A|11 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3B|22 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN|Exercise Exercise|206 Videos

Similar Questions

Explore conceptually related problems

Prove that: (sin(180^(@)+theta)cos(90^(@)+theta)tan(270^(@)-theta)cot(360^(@)-theta))/(sin(360^(@)-theta)cos(360^(@)+theta)cos ec(-theta)sin(270^(@)+theta))=1

Prove that cos theta + "sin " (270^(@) +theta) - "sin "(270^(@) -theta) + "cos " (180^(@) +theta) =0

(sin theta)/(1-cos theta)=cos ec theta+cot theta

cos ((3pi)/(2)+theta) cos (2pi+theta) xx [ cot ((3pi)/(2) -theta) + cot (2pi + theta) ] = ?

Prove that : (2 cos^(3) theta-cos theta)/(sin theta-2 sin^(3)theta)=cot theta

Prove that: (sin2 theta)/(1-cos2 theta)=cot theta

Without using trigonometric tables,evaluate each of the following: (sin^(2)20^(@)+sin^(2)70^(@))/(cos^(2)20^(0)+cos^(2)70^(@))+(sin(90^(@)-theta)sin theta)/(tan theta)+(cos(90^(@)-theta)cos theta)/(cot theta)+cos(40^(0)+theta)-sin(50^(@)-theta)+(cos^(2)40^(0)+cos^(2)50^(@))/(sin^(2)40^(0)+sin^(2)50^(@))

Prove that: 1-(sin^(2)theta)/(1+cot theta)-(cos^(2)theta)/(1+tan theta)=sin theta cos theta