Home
Class 11
MATHS
If alphaa n dbeta are the solutions of t...

If `alphaa n dbeta` are the solutions of the equation `at a ntheta+bs e ctheta=c ,` then show that `tan(alpha+beta)=(2a c)/(a^2-c^2)`

Text Solution

Verified by Experts

`atantheta+bsectheta=c`
`rArr bsectheta=c-a tan theta`
`rArr b^(2)sectheta=(c-a tantheta)^(2)`
`rArr b^(2)(1+tan^(2)theta=c^(2)+a^(2)tantheta-2ac tantheta`
`rArr tan^(2)theta(b^(2)-a^(2))+2actantheta + (b^(2)-c^(2))=0`
Now, the roots of the equation be `tanalpha` and `tanbeta`,
`therefore tanalpha + tanbeta=(-2ac)/(b^(2)-a^(2))`
and `tanalpha. tanbeta=(tanalpha+tanbeta)/(1-tanalphatanbeta)`
`=((-2ac)/(b^(2)-a^(2)))/(1-(b^(2)-c^(2))/(b^(2)-a^(2)))=(-2ac)/((b^(2)-a^(2))-(b^(2)-c^(2)))`
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3A|11 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3B|22 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN|Exercise Exercise|206 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the solutions of the equation a tan theta+b sec theta=c, then show that tan(alpha+beta)=(2ac)/(a^(2)-c^(2))

If alpha and beta are the solution of the equation,a tan theta+b sec theta=c then show that tan(alpha+beta)=(2ac)/(a^(2)-c^(2))

If alpha and beta are the solution of the equation a sec theta+b tan theta=c then show that tan(alpha+beta)=(2bc)/(b^(2)-c^(2))

If alpha and beta are the solutions of the equation a tan theta+b sec theta=c then (alpha+beta)=

If alpha, beta be the solutions of theta for the equation a tan theta + b sec theta = c then prove that tan(alpha+ beta) = 2ac/(a^(2)-c^(2)) .

If alpha and beta are the solution of the equation a cos2 theta+b sin2 theta=c then cos^(2)alpha+cos^(2)beta is equal to

If alpha and beta are the solutions of a cos theta+b sin theta=c, then show that cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))( ii) cos(alpha-beta)=(2c^(2)-(a^(2)+b^(2)))/(a^(2)+b^(2))

If alpha and beta are the solutions roots of a cos theta+b sin theta=c, then choose the correct option (A)sin alpha+sin beta=(2bc)/(a^(2)+b^(2))(B)sin alpha sin beta=(c^(2)-a^(2))/(a^(2)+b^(2))(C)sin alpha+sin beta=(a^(2)-b^(2))/(c^(2)+b^(2))(D)sin alpha sin beta=(a^(2)-b^(2))/(c^(2)+b^(2))(D)

If alpha and beta are the solutions of a cos theta+b sin theta=c, show that sin alpha+sin beta=(2bc)/(a^(2)+b^(2)) and sin alpha sin beta=(c^(2)-a^(2))/(a^(2)+b^(2))