Home
Class 11
MATHS
Find the value of sin 37 (1/2) .sin7...

Find the value of
`sin 37 (1/2) .sin7 (1/2)^(@)`

A

`(sqrt(3)-sqrt(2))/(4)`

B

`(sqrt(3)+sqrt(2))/(4)`

C

`(sqrt(3)-sqrt(2))/(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin(37.5^\circ) \cdot \sin(7.5^\circ) \), we can use the trigonometric identity for the product of sines: \[ 2 \sin A \sin B = \cos(A - B) - \cos(A + B) \] ### Step-by-Step Solution: 1. **Identify \( A \) and \( B \)**: - Let \( A = 37.5^\circ \) and \( B = 7.5^\circ \). 2. **Apply the identity**: - According to the identity, we have: \[ 2 \sin(37.5^\circ) \sin(7.5^\circ) = \cos(37.5^\circ - 7.5^\circ) - \cos(37.5^\circ + 7.5^\circ) \] 3. **Calculate \( A - B \) and \( A + B \)**: - \( A - B = 37.5^\circ - 7.5^\circ = 30^\circ \) - \( A + B = 37.5^\circ + 7.5^\circ = 45^\circ \) 4. **Substitute back into the identity**: \[ 2 \sin(37.5^\circ) \sin(7.5^\circ) = \cos(30^\circ) - \cos(45^\circ) \] 5. **Find the values of \( \cos(30^\circ) \) and \( \cos(45^\circ) \)**: - \( \cos(30^\circ) = \frac{\sqrt{3}}{2} \) - \( \cos(45^\circ) = \frac{1}{\sqrt{2}} \) 6. **Substitute these values**: \[ 2 \sin(37.5^\circ) \sin(7.5^\circ) = \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \] 7. **Divide both sides by 2** to find \( \sin(37.5^\circ) \sin(7.5^\circ) \): \[ \sin(37.5^\circ) \sin(7.5^\circ) = \frac{1}{2} \left( \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \right) \] 8. **Simplify the expression**: - To combine the terms, find a common denominator: \[ \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} = \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2\sqrt{2}} = \frac{\sqrt{3} - \sqrt{2}}{2} \] - Thus, we have: \[ \sin(37.5^\circ) \sin(7.5^\circ) = \frac{1}{2} \cdot \frac{\sqrt{3} - \sqrt{2}}{2} = \frac{\sqrt{3} - \sqrt{2}}{4} \] ### Final Answer: \[ \sin(37.5^\circ) \cdot \sin(7.5^\circ) = \frac{\sqrt{3} - \sqrt{2}}{4} \]

To solve the expression \( \sin(37.5^\circ) \cdot \sin(7.5^\circ) \), we can use the trigonometric identity for the product of sines: \[ 2 \sin A \sin B = \cos(A - B) - \cos(A + B) \] ### Step-by-Step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3A|11 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3B|22 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN|Exercise Exercise|206 Videos

Similar Questions

Explore conceptually related problems

Find the value of sin(22 1/2)^@ :

Find the value of : arc sin (1/2) + arc cos (1/2)

The value of 4sin 127 1/2^@ sin 97 1/2^@=

Fidn the value of sin7((1)/(2))^(@)

Find the value of sin[pi/3 - sin^(-1) (- 1/2)]

Find the value of sin(22(1)/(2))^(@) :

Find the value of sin [ arc cos (- 1/2)]

Find the value of sin ( 2 cos^(-1) x + sin^(-1) x) " when " x = 1/5

Find the value of sin^(-1)(sin7 pi/4)

Find the value of: sin^(-1)(1/sqrt(2))