Home
Class 11
MATHS
Prove that: cospi/10-sinpi/10=sqrt(2)s...

Prove that:
`cospi/10-sinpi/10=sqrt(2)sin(3pi)/(20)`

Text Solution

Verified by Experts

LHS `=cospi/10-sinpi/10`
`=sin(pi/2-sinpi/10)`
`sin(4pi)/(10)-sinpi/10`
`=2cos((4pi)/(10)+sinpi/10)/(2)sin((4pi)/(10)-pi/10)/(2)`
`=2cospi/4sin(3pi)/20=2(1/sqrt(2))sin(3pi)/(20)`
`=sqrt(2)sin(3pi)/(20)`= RHS Hence Proved.
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3A|11 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3B|22 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN|Exercise Exercise|206 Videos

Similar Questions

Explore conceptually related problems

sinpi/10+sin(13pi)/(10)=?

sin((pi)/(10))sin((3pi)/(10))=?

Prove that 4sin(pi/10) sin((13pi)/10)=-1

Prove that: (sin pi)/(10)+(sin(13 pi))/(10)=-(1)/(2)

Prove that: sin((pi)/(10))sin((13 pi)/(10))=-(1)/(4)

Prove that: sinpi/7+sin(2pi)/(7) + sin(8pi)/7 + sin(9pi)/7=0

Prove that: sin(9pi)/(10) + sin(13pi)/(10)=-1/2

Prove that :cos((pi)/(12))-sin((pi)/(12))=(1)/(sqrt(2))

Prove that (1+cos(pi/10))(1+cos(3pi/10))(1+cos(7pi/10))(1+cos(9pi/10))=1/16