Home
Class 11
MATHS
Prove that: cos^(2)48^(@)-sin^(2)12^(@...

Prove that:
`cos^(2)48^(@)-sin^(2)12^(@)=(sqrt(5)+1)/(8)`

Text Solution

AI Generated Solution

To prove that \( \cos^2 48^\circ - \sin^2 12^\circ = \frac{\sqrt{5} + 1}{8} \), we can use trigonometric identities. Let's go through the proof step by step. ### Step 1: Use the identity for difference of squares We know that: \[ \cos^2 A - \sin^2 B = \cos(A + B) \cos(A - B) \] In our case, let \( A = 48^\circ \) and \( B = 12^\circ \). ...
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3A|11 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3B|22 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN|Exercise Exercise|206 Videos

Similar Questions

Explore conceptually related problems

Prove that: cos^(2)48^(0)-sin^(2)12^(0)=(sqrt(5)+1)/(8)

cos^(2)48^(0)-sin^(2)12^(0) is

Prove that sin^(2)48^(@)-cos^(2)12^(@)=-(sqrt(5)+1)/(8)

Prove that: sin^(2)24^(0)-sin^(2)6^(0)=(sqrt(5)-1)/(8)

Prove that: sin^(2)24^(0)-sin^(2)6^(0)=(sqrt(5)-1)/(8)

Prove that: sin^(2)(72^(@))-sin^(2)(60^(@))=(sqrt(5)-1)/(8)

Prove that: sin^(2)42^(2)-cos^(2)78^(@)=(sqrt(5)+1)/(8)

Prove that: sin^(2)42^(0)-cos^(2)78^(0)=(sqrt(5)+1)/(8)

The value of cos^(2)48^(@)-sin^(2)12^(@) is

Prove that (i) "sin"^(2) 24^(@) - sin^(2) 6^(@) =((sqrt(5)-1))/(8) " "(ii) "sin"^(2) 72^(@) - cos^(2) 30^(@) =(sqrt(5)-1)/(8)