Home
Class 11
MATHS
Prove that: (b^(2)+c^(2)-a^(2))tanA=(c...

Prove that:
`(b^(2)+c^(2)-a^(2))tanA=(c^(2)+a^(2)-b^(2))tanB`

Text Solution

Verified by Experts

LHS `=(b^(2)+c^(2)-a^(2))tanA`
`=(b^(2)+c^(2)-a^(2))/(2bc).2bc.(sinA)/(cosA)`
`=cosA.2bc.a/(kcosA)=(2abc)/k`
RHS `=(c^(2)+a^(2)-b^(2))tanB`
`=(c^(2)+a^(2)-b^(2))/(2ca).2ca(sinB)/(cosB)`
`=cosB.2ca.b/(kcosB)=(2abc)/k`
`therefore LHS=RHS` Hence Proved.
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3A|11 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3B|22 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN|Exercise Exercise|206 Videos

Similar Questions

Explore conceptually related problems

In DeltaABC , prove that: (b^(2)-c^(2)+a^(2))tanC=(b^(2)+c^(2)-a^(2))tanA

In any DeltaABC , prove that (c^(2)-a^(2)+b^(2))tanA=(a^(2)-b^(2)+c^(2))tanB=(b^(2)-c^(2)+a^(2))tanC

prove that b^(2)c^(2)+c^(2)a^(2)+a^(2)b^(2)>=abc(a+b+c)

Prove that 2b^(2)c^(2) +2c^(2)a^(2) +2a^(2)b^(2) -a^(4)-b^(4)-c^(4)= (a+b+c) (b+c-a) (c+a-b) (a+b-c)

Prove that: |(b+c)^(2)a^(2)a^(2)b^(2)(c+a)^(2)b^(2)c^(2)c^(2)(a+b)^(2)|=2abc(a+b+c)^(3)

In triangleABC , (b^(2)+c^(2)-a^(2))tanA=

Prove that: ,,(b+c)^(2),a^(2),a^(2)b^(2),(c+a)^(2),b^(2)c^(2),c^(2),(a+b)^(2)]|=2abc(a+b+c)^(3)

Prove that b^(2)c^(2)+c^(2)a^(2)+a^(2)+b^(2)>abc xx(a+b+c)(a,b,c>0)

Prove that ,,(b+c)^(2),a^(2),a^(2)b^(2),(c+a)^(2),b^(2)c^(2),c^(2),(a+b)^(2)]|=2abc(a+b+c)^(3)

In a DeltaABC, (c^(2)+a^(2)-b^(2))tanB+(a^(2)+b^(2)-c^(2))tanC=