Home
Class 11
MATHS
Prove that:tan6^0tan42^0tan66^0tan78^0=1...

Prove that:`tan6^0tan42^0tan66^0tan78^0=1.`

Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3H|12 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3I|16 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3F|24 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN|Exercise Exercise|206 Videos

Similar Questions

Explore conceptually related problems

Prove that: tan6^(0)tan42^(0)tan66^(@)tan78^(@)=1

Prove that: tan10^0tan15^0tan75^0tan80^0=1 tan1^0tan2^0tan3^0tan89^0=1 cos1^0cos2^0cos3^0cos180^0=0

value of tan6^0tan42^0tan66^0tan78^0 is equal to - a) 1 b) 2 c) 1/4 d) 1/8

The value of tan6^(@)tan42^(@)tan66^(@)tan78^(@) is (a) 1 (b) (1)/(2)(c)(1)/(4)(d)(1)/(8)

Show that tan1^(0)tan2^(0)...tan89^(@)=1

Prove that :(tan69^(@)+tan66^(@))/(1-tan69^(@)tan66^(@))=-1

If (cos (AB)) / (cos (A + B)) + (cos (C + D)) / (cos (CD)) = 0 Prove that tan A tan B tan C tan D = -1

The value of tan 6^(@) tan 42^(@) tan 66^(@) tan 78^(@) is

tan9^(0)-tan27^(0)-tan63^(@)+tan81^(@)