Home
Class 11
MATHS
costheta-sintheta=cosalpha-sinalpha...

`costheta-sintheta=cosalpha-sinalpha`

Text Solution

Verified by Experts

`theta=2npi+alpha, theta=2npi-pi/2-alpha`
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3L|10 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3M|8 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3J|13 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN|Exercise Exercise|206 Videos

Similar Questions

Explore conceptually related problems

A square of side a lies above the x-axis and has one vertex at the origin. The side passing through the origin makes an angle alpha(0ltalphaltpi/ 4) with the positive direction of x-axis. equation its diagonal not passing through origin is (a) y(cosalpha+sinalpha)+x(sinalpha-cosalpha)="alpha(b)y(cosalpha+sinalpha)+x(sinalpha+cosalpha)=alpha(c)y(cosalpha+sinalpha)+x(cosalpha-sinalpha)=alpha(d)y(cosalpha-sinalpha)-x(sinalpha-cosalpha)=alpha

(sintheta+costheta)/(sintheta-costheta)+(sintheta-costheta)/(sintheta+costheta) =_____________.

Prove that : (sintheta-costheta)/(sintheta+costheta)+(sintheta+costheta)/(sintheta-costheta)=(2)/(2sin^(2)theta-1)

If tantheta=(sinalpha-cosalpha)/(sinalpha+cosalpha) then show that sinalpha+cosalpha=sqrt(2)costheta .

If tantheta=(sinalpha-cosalpha)/(sinalpha+cosalpha) , then sinalpha+cosalphaandsinalpha-cosalpha are equal to

The value of the determinant |{:(cos(theta+alpha),-sin(theta+alpha),cos2alpha),(sintheta,costheta,sinalpha),(-costheta,sintheta,lambdacosalpha):}| is

A square of side ' a ' lies above the x-axis and has one vertex at the origin. The side passing through the origin makes an angle alpha (0ltalphaltpi/ 4) with the positive direction of x-axis. equation its diagonal not passing through origin is: a. y(cosalpha-sinalpha)-x(sinalpha-cosalpha)=a b. y(cosalpha+sinalpha)+x(sinalpha-cosalpha)=a c. y(cosalpha-sinalpha)+x(sinalpha+cosalpha)=a d. y(cosalpha+sinalpha)-x(cosalpha+sinalpha)=a

If sintheta=sinalpha , then

costheta[[costheta, sintheta], [-sintheta, costheta]]+sintheta[[sintheta, -costheta], [costheta, sintheta]]=

If (2sinalpha)/(1+cosalpha +sinalpha)=y , then prove that (1-cosalpha+sinalpha )/(1+sinalpha) is also equal to y.