Home
Class 12
MATHS
Let tan(2pi|sintheta|)=cot(2pi|costheta|...

Let `tan(2pi|sintheta|)=cot(2pi|costheta|)` , where `theta in R` and `f(x)=(|sintheta|+|costheta"|"")"^x ,xgeq1.` The range of `f(x)` include 1 (b) 2 (c) 3 (d) 4

Promotional Banner

Similar Questions

Explore conceptually related problems

Let tan(2 pi|sin theta|)=cot(2 pi|cos theta|), where theta in R and f(x)=(|sin theta|+|cos theta|)^(x),x>=1. The range of f(x) include 1( b ) 2(c)3(d)4

Solve tan(pi/2costheta)=cot(pi/2sintheta)

(sintheta-costheta+1)/(sintheta+costheta-1) (where theta ne (pi)/(2)) is equal to

If x = (2sintheta)/(1+costheta+sintheta), then (1-costheta+sintheta)/(1+sintheta) is equal to

If x=(2sintheta)/(1+costheta+sintheta),t h e n(1-costheta+sintheta)/(1+sintheta) is equal to

If x=(2sintheta)/(1+costheta+sintheta) , then prove that (1-costheta+sintheta)/(1+sintheta) is equal to x .

If x=ae^(theta)(sintheta-costheta),y=ae^(theta)(sintheta+costheta)," then "((dy)/(dx))" at "theta=(pi)/(2) is

Prove that : (sintheta-costheta)/(sintheta+costheta)+(sintheta+costheta)/(sintheta-costheta)=(2)/(2sin^(2)theta-1)

Prove that : (sintheta-costheta)/(sintheta+costheta)+(sintheta+costheta)/(sintheta-costheta)=(2)/(2sin^(2)theta-1)