Home
Class 11
MATHS
sec^(2)2x=1-tan2x...

`sec^(2)2x=1-tan2x`

Text Solution

Verified by Experts

Given equation is `sec^(2)2x=1-tan2x`
or `1+tan^(2)2x=1-tan2x`
or `tan^(2)2x+tan2x=0`
or `tan2x(1+tan2x)=0`
`rArr tan2x=0` or `1+tan2x=0`
If `tan2x=0`, then `2x=npi`
`rArr x=(npi)/(2)` where `n in Z`
and `tan2x = 1=tan(pi-pi/4)`
`rArr tan2x=tan(3pi)/(4)`
`rArr 2x=npi + (3pi)/(4)`
`rArr x=(npi)/(2) + (3pi)/(8)` where `n in Z`
Therefore, the general solution of given equations is
`x=(npi)/(2)` or `(npi)/(2)+(3pi)/(8), n in Z` Ans.
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3.3|25 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN|Exercise Exercise|206 Videos

Similar Questions

Explore conceptually related problems

Solve the following trigonometric equations, (i) sec^(2)2x=1-"tan"2x

int sec^(2)x-tan^(2)x

Evaluate: int(sec^(2)x)/(1-tan^(2)x)dx

int(sec^(2)x)/(1-tan^(2)x)dx

int(4sec^(2)x tan x)/(sec^(2)x+tan^(2)x)dx=log|1+f(x)|+C

int(1)/(sec^(2)x+2tan^(2)x)dx

Evaluate: int(sec^2x)/(1-tan^2x)\ dx

int(1)/(sqrt(sec^(2)x+tan^(2)x))dx=

int (tanx sec^(2)x)/((1-tan^(2)x))dx.

Prove that : 2sec^(2)x-sec^(4)x-2cos ec^(2)x+cos ec^(4)x=(1-tan^(8)x)/(tan^(4)x)