Home
Class 12
MATHS
If x=m x+c touches the parabola y^2=4a(...

If `x=m x+c` touches the parabola `y^2=4a(x+a),` then (a)`c=a/m` (b) `c=a m+a/m` (c)`c=a+a/m` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=m x+c touches the parabola y^2=4a(x+a), then (a) c=a/m (b) c=a m+a/m (c) c=a+a/m (d) none of these

If y=m x+c touches the parabola y^2=4a(x+a), then (a) c=a/m (b) c=a m+a/m (c) c=a+a/m (d) none of these

If x=mx+c touches the parabola y^(2)=4a(x+a), then (a)c=(a)/(m) (b) c=am+(a)/(m)(c)c=a+(a)/(m)(d) none of these

If y=m x+c touches the parabola y^2=4a(x+a), then (a) c=a/m (b) c=a m+a/m c=a+a/m (d) none of these

If the line y=m x+c is a tangent to the parabola y^(2)=4 a(x+a) , then c=

If y+3=m_1(x+2) and y+3=m_2(x+2) are two tangents to the parabola y^2=8x , then (a) m_1+m_2=0 (b) m_1.m_2=-1 (c) m_1+m_2=1 (d) none of these

The line y =m(x+a) + a/m touch the parabola y^(2)=4a(x+a) for m

If y+3=m_1(x+2) and y+3=m_2(x+2) are two tangents to the parabola y_2=8x , then (a) m_1+m_2=0 (b) m_1+m_2=-1 (c) m_1+m_2=1 (d) none of these

If y+3=m_1(x+2) and y+3=m_2(x+2) are two tangents to the parabola y_2=8x , then (a)m_1+m_2=0 (b) m_1+m_2=-1 (c)m_1+m_2=1 (d) none of these

Show that the line y = mx + c touches the parabola y^(2) = 4ax if c = (a)/(m) .