Home
Class 11
MATHS
If log(10)(x^3+y^3)-log(10)(x^2-xy+y^2)+...

If `log_(10)(x^3+y^3)-log_(10)(x^2-xy+y^2)+log_(10)(x^3-y^3)-log_(10)(x^2+xy+y^2)`=`log_(10)221` then

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(10)|x^3 + y^3|-log_(10) |x^2-xy + y^2|+log_(10)|x^3-y^3|-log_(10)|x^2+xy+y^2|=log_(10)221. wherex, y are integers , then (i) if x=111 then y can be: (ii) if y=2then value of x can be:

If log_(10)|x^3 + y^3|-log_(10) |x^2-xy + y^2|+log_(10)|x^3-y^3|-log_(10)|x^2+xy+y^2|=log_(10)221 . wherex, y are integers , then (i) if x=111 then y can be: (ii) if y=2 then value of x can be:

If log_(10)|x^(3)+y^(3)|-log_(10)|x^(2)-xy+y^(2)|+log_(10)|x^(3)-y^(3)|-log_(10)|x^(2)+xy+y^(2)|=log_(10)221 . Where x, y are integers, then Q. If y=2 , then value of x can be :

If log_(10) (x^3+y^3)-log_(10) (x^2+y^2-xy) =0, y>=0 is

If log_(10)(x^(3)+y^(3))-log_(10)(x^(2)+y^(2)-xy) =0,y>=0 is

If log_(10)x+log_(10)y=2, x-y=15 then :

If log_(10)x+log_(10)y=2, x-y=15 then :

Find the real solutions to the system of equations log_(10)(2000xy)-log_(10)x.log_(10)y=4 , log_(10)(2yz)-log_(10)ylog_(10)z=1 and log_(10)zx-log_(10)zlog_(10)x=0

Find the real solutions to the system of equations log_(10)(2000xy)-log_(10)x.log_(10)y=4 , log_(10)(2yz)-log_(10)ylog_(10)z=1 and log_(10)zx-log_(10)zlog_(10)x=0