Home
Class 12
MATHS
If vecr=l(vecb xx vecc)+m(vecc xx veca)+...

If `vecr=l(vecb xx vecc)+m(vecc xx veca)+n(veca xx vec b)` and `[veca, vecb, vecc]=2,` then `l+m+n` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If [vecaxx vecb vecb xx vecc vecc xx veca] = lamda [veca vecb vecc]^(2), then lamda is equal to :

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc]^2 , then lambda is equal to

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc^(2)] , then lambda is equal to

Let veca, vecb, vecc be three vectors such that [(veca, vecb, vecc)]=2 . If vecr=l(vecbxxvecc)+m(veccxxveca)+n(vecaxxvecb) be perpendicular to veca+vecb+vecc , then the value of l+m+n is

Let veca, vecb, vecc be three vectors such that [(veca, vecb, vecc)]=2 . If vecr=l(vecbxxvecc)+m(veccxxveca)+n(vecaxxvecb) be perpendicular to veca+vecb+vecc , then the value of l+m+n is

If veca , vecb and vecc are three non-coplanar vectors and vecp , vecq and vecr are vectors defined by vecp = (vecb xx vecc)/([veca vecb vecc]) , vecq = (vecc xx veca)/([veca vecb vecc]) and vecr = (veca xx vec b)/([veca vecb vec c]) , then the value of (veca + vecb) * (vecb + vecc) * vecq + (vecc + vec a) * vecr =

For any four vectors veca, vecb, vecc, vecd the expressions (vecb xx vecc).(veca xx vecd) +(vecc xx veca).(vecb xx vecd)+(veca xx vecb).(vecc xx vecd) is always equal to:

For any four vectors veca, vecb, vecc, vecd the expressions (vecb xx vecc).(veca xx vecd) +(vecc xx veca).(vecb xx vecd)+(veca xx vecb).(vecc xx vecd) is always equal to:

If (veca xx vecb)xx vecc= veca xx (vecb xx vecc) and vecb perpendicular to vecc then which is true ?