Home
Class 12
MATHS
If vecx xx vecb=vecc xx vecb and vecx | ...

If `vecx xx vecb=vecc xx vecb and vecx _|_ veca,` then `vecx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Assertion: If vecx xx vecb=veccxxvecb and vecx_|_veca then vecx=((vecbxxvecc)xxveca)/(veca.vecb) , Reason: vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Assertion: If vecx xx vecb=veccxxvecb and vecxd_|_veca then vecx=((vecbxxvecc)xxveca)/(veca.vecb) , Reason: vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

If vecxxxvedcb=veccxxvecb and vecx_|_veca then vecx is equal to (A) ((vecbxxvecc)vecxxveca)/(vecb.veca) (B) (vecbxx(vecaxxvecc)/(vecb.vecc) (C) (vecaxx(veccxxvecb)/(veca.vecb) (D) none of these

If vecxXvecb=veccxxvecb and vecx_|_veca then vecx is equal to (A) ((vecbxxvecc)xxveca)/(vecb.veca) (B) ((vecbxx(vecaxxvecc))/(vecb.vecc)) (C) ((vecaxx(veccxxvecb))/(veca.vecb)) (D) none of these

Let veca=hati+2hatj+3hatk , vecb=2hati+3hatj+hatk, vecc=hatk+hati and (vecx xx vecb)=(veca xx vecc)xxvecb . If vecx .veca=0 , then |vecx| is equal to use sqrt3=1.73 )

Let veca=hati+2hatj+3hatk , vecb=2hati+3hatj+hatk, vecc=hatk+hati and (vecx xx vecb)=(veca xx vecc)xxvecb . If vecx .veca=0 , then |vecx| is equal to use sqrt3=1.73 )

If vecx xx vecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 and vecy.vecz=1 then find x,y,z in terms of veca,vecb and gamma.

If vecx xx vecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 and vecy.vecz=1 then find x,y,z in terms of veca,vecb and gamma .

Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 with each other. If vecx xx(vecy xx vecz) = veca, vecy xx( vecz xx vecx)=vecb and vecx xx vecy=vecc, find vecx, vecy, vecz in terms of veca, vecb and vecc .

If vecx xxvecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 and vecy.vecz=1 then find x,y,z in terms of veca,vecb and gamma .