Home
Class 12
MATHS
If vecaxx(vecbxxvecc)+(veca*vecb)vecb=(...

If `vecaxx(vecbxxvecc)+(veca*vecb)vecb=(4-2beta-sinalpha)vecb+(beta^2-1)vecc and (vecc*vecc)veca=vecc,vecb,vecc` being non-collinear then

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the scaslars alpha and beta if vecaxx(vecbxxvecc)+(veca.vecb)vecb=(vec4-2beta-sinalpha)vecb+(beta^2-1)vecc and (vecc.vecc)veca=vecc where vecb and vecc are non collinear and alpha, beta are scalars

Find the scaslars alpha and beta if vecaxx(vecbxxvecc)+(veca.vecb)vecb=(vec4-2beta-sinalpha)vecb+(beta^2-1)vecc and (vecc.vecc)veca=vecc where vecb and vecc are non collinear and alpha, beta are scalars

vecb and vecc are non- collinear if veca xx (vecb xx vecc) + (veca .vecb) vecb = ( 4-2x- sin y) vecb + ( x^(2) -1) vecc andd (vec. vecc) veca =veca then

vecb and vecc are non- collinear if veca xx (vecb xx vecc) + (veca .vecb) vecb = ( 4-2x- sin y) vecb + ( x^(2) -1) vecc andd (vec. vecc) veca =veca then

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb.vecc,veca.vecc)| where veca, vecb,vecc are coplanar then:

If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb.vecc,veca.vecc)| where veca, vecb,vecc are coplanar then:

If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc), Where veca, vecb and vecc and any three vectors such that veca.vecb=0,vecb.vecc=0, then veca and vecc are

If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc), Where veca, vecb and vecc and any three vectors such that veca.vecb=0,vecb.vecc=0, then veca and vecc are

If vecA=(vecbxxvecc)/([vecb vecc vecc]), vecB=(veccxxveca)/([vecc veca vecb)], vecC=(vecaxxvecb)/([veca vecb vecc)] find [vecA vecB vecC]