Home
Class 12
MATHS
Find x and y if (x^4+2x i)-(3x^2+y i)=(3...

Find x and y if `(x^4+2x i)-(3x^2+y i)=(3-5i)+(1+2y i)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find x and y if: (x+iy)(2+3i)=4+i

Find x and y if: (i) (x + 1,y-2) = (3,1) (ii) (x + 2,4)= (5,2x+y)

If (x^(4)+2x i)-(3x^(2)+yi)=(3-5i)+(1+2yi) then the number of ordered pairs (x, y) is/are equal to {AA x,y in R and i^(2)=-1}

If (x^(4)+2x i)-(3x^(2)+yi)=(3-5i)+(1+2yi) then the number of ordered pairs (x, y) is/are equal to {AA x,y in R and i^(2)=-1}

Find x and y if |(4i,i^3,2i),(1,3i^2,4),(5,-3,i)|=x+iy where i^2=-1

If (x^(4)+2x.i )-(3x^(2)-iy)=(3-5i)+(1+2iy) then find the real value of x and y.

Find the value of x and y if (i)3x+(2x-y)i=6-3i( ii) 3x+5yi=5i