Home
Class 12
MATHS
If A, B, C, D be the angles of a quadril...

If `A, B, C, D` be the angles of a quadrilateral, prove that : `(tanA+tanB+tanC+tanD)/(cotA+cotB+cotC+cotD) = tan A tan B tan C tan D`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A, B, C, D be the angle of a quadrilateral, then (tan A + tan B + tan C + tan D)/( cot A + cot B + cot C + cot D) =

If A , B , C , D are the angles of a quadrilateral, then (tanA+tanB+tanC+tanD)/(cotA+cotB+cotC+cotD) is equal to: (a) tanAtanBtanCtanD (b) cotAcotBcotCcotD (c) tan^2A+tan^2B+tan^2C+tan^2D (d) sumtanAtanBtanC

If A , B , C , D are the angles of a quadrilateral, then (tanA+tanB+tanC+tanD)/(cotA+cotB+cotC+cotD)i se q u a lto: tanAtanBtanCtanD cotAcotBcotCcotD tan^2A+tan^2B+tan^2C+tan^2D sumtanAtanBtanC

If A,B,C,D are the angles of a quadrilateral, then (tan A+tan B+tan C+tan D)/(cot A+cot B+cot C+cot D) is equal to: (a) tan A tan B tan C tan D(b)tan^(2)A+tan^(2)B+tan^(2)C+tan^(2)D(d)sum tan A tan B tan C

If A,B,C,D are the angles of a quadrilateral then tan""((A+B)/(4))=

If A, B, C, D are the four angle taken in order of a cyclic quadrilateral, prove that (i) tan A + tan B + tan C + tan D = 0

If A,B,C,D are the four angles taken in order of a cyclic quadrilateral prove that tan A+tan B+tan C+tan D=0

If A, B, C, D are the four angle taken in order of a cyclic quadrilateral, prove that (iv) tan (A + B) + tan (C + D) = 0 .

If in a Delta ABC ,tanA+tanB+tanC=6, then cotA cotB cotC=

If A+B+C=pi , prove that : (tanA+tanB+tanC) (cotA+cotB+cotC)=1+secA secB secC .